
Eliot Documentation
Release 1.13.0+0.ge858c8e

Itamar Turner-Trauring

Dec 15, 2020





Contents

1 Media 3

2 Testimonials 5

3 Documentation 7
3.1 Quickstart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Why Eliot? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 What’s New . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Generating Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Outputting Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Reading Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7 Scientific Computing with Eliot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.8 Python 2.7 Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.9 Contributing to Eliot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

i



ii



Eliot Documentation, Release 1.13.0+0.ge858c8e

Python’s built-in logging and other similar systems output a stream of factoids: they’re interesting, but you can’t
really tell what’s going on.

• Why is your application slow?

• What caused this code path to be chosen?

• Why did this error happen?

Standard logging can’t answer these questions.

But with a better model you could understand what and why things happened in your application. You could pinpoint
performance bottlenecks, you could understand what happened when, who called what.

That is what Eliot does. eliot is a Python logging system that outputs causal chains of actions: actions can spawn
other actions, and eventually they either succeed or fail. The resulting logs tell you the story of what your software
did: what happened, and what caused it.

Eliot supports a range of use cases and 3rd party libraries:

• Logging within a single process.

• Causal tracing across a distributed system.

• Scientific computing, with built-in support for NumPy and Dask.

• Asyncio and Trio coroutines and the Twisted networking framework.

Eliot is only used to generate your logs; you might still need tools like Logstash and ElasticSearch to aggregate and
store logs if you are using multiple processes across multiple machines.

• Start here: Quickstart documentation

• Need help or have any questions? File an issue.

• Eliot is licensed under the Apache 2.0 license, and the source code is available on GitHub.

• Eliot supports Python 3.9, 3.8, 3.7, 3.6, and PyPy3. Python 2.7 is in legacy support mode (see Python 2.7
Support for details).

• Commercial support is available from PythonSpeed.

• Read on for the full documentation.

Contents 1

https://github.com/itamarst/eliot/issues/new
https://github.com/itamarst/eliot/blob/master/LICENSE
https://github.com/itamarst/eliot
https://pythonspeed.com/services/#eliot


Eliot Documentation, Release 1.13.0+0.ge858c8e

2 Contents



CHAPTER 1

Media

PyCon 2019 talk: Logging for Scientific Computing (also available in a prose version).

Podcast.__init__ episode 133 covers Eliot:

3

https://pyvideo.org/pycon-us-2019/logging-for-scientific-computing-reproducibility-debugging-optimization.html
https://pythonspeed.com/articles/logging-for-scientific-computing/
https://www.podcastinit.com/eliot-logging-with-itamar-turner-trauring-episode-133/


Eliot Documentation, Release 1.13.0+0.ge858c8e

4 Chapter 1. Media



CHAPTER 2

Testimonials

“Eliot has made tracking down causes of failure (in complex external integrations and internal uses)
tremendously easier. Our errors are logged to Sentry with the Eliot task UUID. That means we can go from
a Sentry notification to a high-level trace of operations—with important metadata at each operation—in a
few seconds. We immediately know which user did what in which part of the system.”

—Jonathan Jacobs

5



Eliot Documentation, Release 1.13.0+0.ge858c8e

6 Chapter 2. Testimonials



CHAPTER 3

Documentation

3.1 Quickstart

Let’s see how easy it is to use Eliot.

3.1.1 Installing Eliot

To install Eliot and the other tools we’ll use in this example, run the following in your shell:

$ pip install eliot eliot-tree requests

You can also install it using Conda:

$ conda install -c conda-forge eliot eliot-tree requests

This will install:

1. Eliot itself.

2. eliot-tree, a tool that lets you visualize Eliot logs easily.

3. requests, a HTTP client library we’ll use in the example code below. You don’t need it for real Eliot usage,
though.

3.1.2 Our example program

We’re going to add logging code to the following script, which checks if a list of links are valid URLs:

import requests

def check_links(urls):
for url in urls:

(continues on next page)

7

https://github.com/jonathanj/eliottree


Eliot Documentation, Release 1.13.0+0.ge858c8e

(continued from previous page)

try:
response = requests.get(url)
response.raise_for_status()

except Exception as e:
raise ValueError(str(e))

try:
check_links(["http://eliot.readthedocs.io", "http://nosuchurl"])

except ValueError:
print("Not all links were valid.")

3.1.3 Adding Eliot logging

To add logging to this program, we do two things:

1. Tell Eliot to log messages to file called “linkcheck.log” by using eliot.to_file().

2. Create two actions using eliot.start_action(). Actions succeed when the eliot.
start_action() context manager finishes successfully, and fail when an exception is raised.

import requests
from eliot import start_action, to_file
to_file(open("linkcheck.log", "w"))

def check_links(urls):
with start_action(action_type="check_links", urls=urls):

for url in urls:
try:

with start_action(action_type="download", url=url):
response = requests.get(url)
response.raise_for_status()

except Exception as e:
raise ValueError(str(e))

try:
check_links(["http://eliot.readthedocs.io", "http://nosuchurl"])

except ValueError:
print("Not all links were valid.")

3.1.4 Running the code

Let’s run the code:

$ python linkcheck.py
Not all the links were valid.

We can see the resulting log file is composed of JSON messages, one per line:

$ cat linkcheck.log
{"action_status": "started", "task_uuid": "b1cb58cf-2c2f-45c0-92b2-838ac00b20cc",
→˓"task_level": [1], "timestamp": 1509136967.2066844, "action_type": "check_links",
→˓"urls": ["http://eliot.readthedocs.io", "http://nosuchurl"]}
...

8 Chapter 3. Documentation



Eliot Documentation, Release 1.13.0+0.ge858c8e

So far these logs seem similar to the output of regular logging systems: individual isolated messages. But unlike those
logging systems, Eliot produces logs that can be reconstructed into a tree, for example using the eliot-tree utility:

$ eliot-tree linkcheck.log
b1cb58cf-2c2f-45c0-92b2-838ac00b20cc

check_links/1 started
timestamp: 2017-10-27 20:42:47.206684
urls:

0: http://eliot.readthedocs.io
1: http://nosuchurl

download/2/1 started
timestamp: 2017-10-27 20:42:47.206933
url: http://eliot.readthedocs.io
download/2/2 succeeded

timestamp: 2017-10-27 20:42:47.439203
download/3/1 started

timestamp: 2017-10-27 20:42:47.439412
url: http://nosuchurl
download/3/2 failed

errno: None
exception: requests.exceptions.ConnectionError
reason: HTTPConnectionPool(host='nosuchurl', port=80): Max retries

→˓exceeded with url: / (Caused by NewConnec...
timestamp: 2017-10-27 20:42:47.457133

check_links/4 failed
exception: builtins.ValueError
reason: HTTPConnectionPool(host='nosuchurl', port=80): Max retries

→˓exceeded with url: / (Caused by NewConnec...
timestamp: 2017-10-27 20:42:47.457332

Notice how:

1. Eliot tells you which actions succeeded and which failed.

2. Failed actions record their exceptions.

3. You can see just from the logs that the check_links action caused the download action.

3.1.5 Next steps

You can learn more by reading the rest of the documentation, including:

• The motivation behind Eliot.

• How to generate actions, standalone messages, and handle errors.

• How to integrate or migrate your existing stdlib logging messages.

• How to output logs to a file or elsewhere.

• Using asyncio or Trio coroutines, threads and processes, or Twisted.

• Using Eliot for scientific computing.

3.2 Why Eliot?

Suppose we turn from outside estimates of a man, to wonder, with keener interest, what is the report of his
own consciousness about his doings or capacity: with what hindrances he is carrying on his daily labors;

3.2. Why Eliot? 9



Eliot Documentation, Release 1.13.0+0.ge858c8e

what fading of hopes, or what deeper fixity of self-delusion the years are marking off within him; and with
what spirit he wrestles against universal pressure, which will one day be too heavy for him, and bring his
heart to its final pause.

— George Eliot, Middlemarch

The log messages generated by a piece of software ought tell a story: what, where, when, even why and how if you’re
lucky. But most logging systems omit the all-important why. You know that some things happened, but not how they
relate to each other.

3.2.1 The problem: What caused this to happen?

Most log messages in your program are going to involve actions:

Not long after that dinner-party she had become Mrs. Casaubon, and was on her way to Rome.

A marriage has a beginning and eventually an end. The end may be successful, presuming “until death do us part”
is a form of success, or a failure. The same is true of all actions, much like function calls in Python are started and
eventually return a result or throw an exception. Actions may of course span multiple function calls or extended
periods of time.

Actions also generate other actions: a marriage leads to a trip to Rome, the trip to Rome might lead to a visit to the
Vatican Museum, and so on. Other unrelated actions are occurring at the same time, resulting in a forest of actions,
with root actions that grow a tree of child actions.

You might want to trace an action from beginning to end, e.g. to measure how long it took to run. You might want to
know what high-level action caused a particular unexpected low-level action. You might want to know what actions a
specific entity was involved with.

None of these are possible in most logging systems since they have no concept of actions.

3.2.2 The solution: Eliot

Eliot is designed to solve these problems: the basic logging abstraction is the action.

An “action” is something with a start and an end; the end can be successful or it can fail due to an exception. Log
messages, as well as log actions, know the log action whose context they are running in. The result is a tree of actions.

In the following example we have one top-level action (the honeymoon), which leads to other action (travel):

from sys import stdout
from eliot import start_action, to_file
to_file(stdout)

class Place(object):
def __init__(self, name, contained=()):

self.name = name
self.contained = contained

def visited(self, people):
# No need to repetitively log people, since caller will:
with start_action(action_type="visited", place=self.name):

for thing in self.contained:
thing.visited(people)

def honeymoon(family, destination):
(continues on next page)

10 Chapter 3. Documentation



Eliot Documentation, Release 1.13.0+0.ge858c8e

(continued from previous page)

with start_action(action_type="honeymoon", people=family):
destination.visited(family)

honeymoon(["Mrs. Casaubon", "Mr. Casaubon"],
Place("Rome, Italy",

[Place("Vatican Museum",
[Place("Statue #1"), Place("Statue #2")])]))

Actions provide a Python context manager. When the action starts, a start message is logged. If the block finishes
successfully a success message is logged for the action; if an exception is thrown a failure message is logged for the
action with the exception type and contents.

By default the messages are machine-parseable JSON, but for human consumption a visualization is better. Here’s
how the log messages generated by the new code look, as summarized by the eliot-tree tool:

f9dcc74f-ecda-4543-9e9a-1bb062d199f0
+-- honeymoon@1/started

|-- people: ['Mrs. Casaubon', 'Mr. Casaubon']
+-- visited@2,1/started

|-- place: Rome, Italy
+-- visited@2,2,1/started

|-- place: Vatican Museum
+-- visited@2,2,2,1/started

|-- place: Statue #1
+-- visited@2,2,2,2/succeeded

+-- visited@2,2,3,1/started
|-- place: Statue #2
+-- visited@2,2,3,2/succeeded

+-- visited@2,2,4/succeeded
+-- visited@2,3/succeeded

+-- honeymoon@3/succeeded

No longer isolated fragments of meaning, our log messages are now a story. Log events have context, you can tell
where they came from and what they led to without guesswork.

Was looking at a statue the result of the honeymoon? It most definitely was.

3.3 What’s New

3.3.1 1.13.0

Features:

• @capture_logging and MemoryLogger now support specifying a custom JSON encoder. By default they
now use Eliot’s encoder. This means tests can now match the encoding used by a FileDestination.

• Added support for Python 3.9.

Deprecation:

• Python 3.5 is no longer supported.

3.3. What’s New 11

https://warehouse.python.org/project/eliot-tree/


Eliot Documentation, Release 1.13.0+0.ge858c8e

3.3.2 1.12.0

Features:

• Dask support now includes support for tracing logging of dask.persist(), via wrapper API eliot.
dask.persist_with_trace().

Bug fixes:

• Dask edge cases that previously weren’t handled correctly should work better.

3.3.3 1.11.0

Features:

• Message.log() has been replaced by top-level function log_message(). Or if you’re in the context of
action ctx, you can call ctx.log(). See Messages for details.

• Python 3.8 is now supported.

• The eliot-prettyprint command line tool now supports a more compact format by using the
--compact argument.

• The eliot-prettyprint command line tool now supports outputting in local timezones using the
--local-timezone argument.

3.3.4 1.10.0

Bug fixes:

• @eliot.testing.capture_logging now passes *args and **kwargs to the wrapped function, as
one would expect. Fixes #420. Thanks to Jean-Paul Calderone for the bug report.

• Eliot works with Dask 2.0. Thanks to Dan Myung for the bug report.

3.3.5 1.9.0

Deprecation:

• Python versions older than 3.5.3, e.g. the 3.5.2 on Ubuntu Xenial, don’t work with Eliot, so added a more
informative error message explaining that. Fixes #418. Thanks to Richard van der Hoff for the bug report.

Features:

• If you call to_file()/FileDestination() with a non-writable file, an exception will be raised. This
prevents logging from being silently swallowed when the program runs. Fixes #403.

• PyPy3 is now officially supported.

Changes:

• If you log a NumPy array whose size > 10000, only a subset will logged. This is to ensure logging giant arrays
by mistake doesn’t impact your software’s performance. If you want to customize logging of large arrays, see
Logging large arrays. Fixes #410.

12 Chapter 3. Documentation



Eliot Documentation, Release 1.13.0+0.ge858c8e

3.3.6 1.8.0

Features:

• Eliot now supports Trio coroutines, as well as other frameworks that utilize Python 3.7’s contextvars
(Python 3.5 and 3.6 are also supported, using backport packages).

Deprecation:

• eliot.use_asyncio_context() is no longer necessary. On Python 3.5 and 3.6, however, you should
make sure to import eliot (or aiocontextvars) before you start your first event loop.

Changes:

• Python 2.7 is now in legacy support mode; the last major Eliot release supporting it is 1.7.0. See Python 2.7
Support for details.

• Python 3.4 is no longer supported.

3.3.7 1.7.0

Documentation:

• Eliot has an API for testing that your logs were output correctly. Until now, however, the documentation was
overly focused on requiring usage of types, which are optional, so it has been rewritten to be more generic: read
more about the testing API here.

Features:

• Generating messages is much faster.

• Eliot now works with PyInstaller. Thanks to Jean-Paul Calderone for the bug report. Fixes issue #386.

• The testing infrastructure now has slightly more informative error messages. Thanks to Jean-Paul Calderone for
the bug report. Fixes issue #373.

• Added lower-level testing infrastructure—eliot.testing.swap_logger and eliot.testing.
check_for_errors—which is useful for cases when the @capture_logging decorator is insufficient.
For example, test methods that are async, or return Twisted Deferred. See the testing documentation for
details. Thanks to Jean-Paul Calderone for the feature request. Fixes #364.

• eliot.ValidationError, as raised by e.g. capture_logging, is now part of the public API. Fixed
issue #146.

Twisted-related features:

• New decorator, @eliot.twisted.inline_callbacks , which is like Twisted’s inlineCallbacks
but which also manages the Eliot context. Thanks to Jean-Paul Calderone for the fix. Fixed issue #259.

• eliot.twisted.DeferredContext.addCallbacks now supports omitting the errback, for compat-
ibility with Twisted’s Deferred. Thanks to Jean-Paul Calderone for the fix. Fixed issue #366.

Bug fixes:

• Fixed bug in the asyncio coroutine support where only the thread where use_asyncio_context() was
called supported coroutine-specific contexts. Fixes issue #388.

• ILogger.write is now explicitly thread-safe. The MemoryLogger (as used by tests) implementation of
this method which was previously not thread-safe is now thread-safe. Thanks to Jean-Paul Calderone for the
patch. Fixes issue #382.

3.3. What’s New 13



Eliot Documentation, Release 1.13.0+0.ge858c8e

3.3.8 1.6.0

Deprecation:

• Python 2 is still supported, but will be dropped in one of the next releases. See Python 2.7 Support.

Features:

• NumPy integers, floats, bools and arrays are now automatically serialized to JSON, via a new default JSON
encoder (eliot.json.EliotJSONEncoder).

• Dask support: replace dask.compute() with eliot.dask.compute_with_trace() to automati-
cally preserve Eliot context for Bag and Delayed Dask computations. See Using Dask for details.

• New decorator, @eliot.log_call, which automatically creates an action that starts when function is called
and ends when it returns. See Logging Functions.

• A parser library for parsing serialized Eliot JSON messages into a tree of Python objects. See Parsing Logs for
details.

Testing features:

• eliot.testing.LoggedAction has a new method, type_tree(), that returns the tree of action and
message types. This allows for easier testing of action structure.

• eliot.testing.LoggedAction.of_type now accepts the type as a string, not just an eliot.
ActionType instance. Similarly, LoggedMessage.of_type also accepts the type as a string.

3.3.9 1.5.0

Bug fixes:

• The standard library logging bridge now logs tracebacks, not just messages.

Features:

• You can now pass in an explicit traceback tuple to write_traceback.

Changes:

• The deprecated system argument to write_traceback and writeFailure has been removed.

3.3.10 1.4.0

Features:

• Added support for routing standard library logging into Eliot; see Route existing logs to Eliot for details.

• Added support for Python 3.7.

Output format changes:

• All messages now have either message_type or action_type fields.

Documentation:

• Documented how to add log levels, and how to filter Eliot logs.

• Logstash configuration is closer to modern version’s options, though still untested.

• Explained how to integrate/migrate existing logging with Eliot.

14 Chapter 3. Documentation



Eliot Documentation, Release 1.13.0+0.ge858c8e

3.3.11 1.3.0

Features:

• The default JSON output format now supports custom JSON encoders. See Customizing JSON Encoding for
details. Thanks to Jonathan Jacobs for feedback.

Bug fixes:

• MemoryLogger.validate() now gives more informative errors if JSON encoding fails. Thanks to Jean-
Paul Calderone for the bug report.

Deprecations:

• On Python 3, the JSON encoder used by to_file and FileDestination would accept bytes. . . some-
times. This is deprecated, and will cease to work in a future release of Eliot (on Python 3, it will continue to
work on Python 2). If you wish to include bytes in JSON logging, convert it to a string in the log-generating
code, use Eliot’s type system, or use a custom JSON encoder.

3.3.12 1.2.0

Features:

• Eliot now does the right thing for asyncio coroutines in Python 3.5 and later. See Asyncio/Trio Coroutine
Support for details. Thanks to x0zzz for the bug report.

Misc:

• Action.continue_task can now accept text task IDs (str in Python 3, unicode in Python 2).

3.3.13 1.1.0

Features:

• Messages are no longer lost if they are logged before any destinations are added. In particular, messages will be
buffered in memory until the first set of destinations are added, at which point those messages will be delivered.
Thanks to Jean-Paul Calderone for the feature request.

• eliot.add_destinations replaces eliot.add_destination, and accepts multiple Destinations at
once.

• eliot.twisted.TwistedDestination allows redirecting Eliot logs to twisted.logger. Thanks
to Glyph Lefkowitz for the feature request.

Misc:

• Coding standard switched to PEP-8.

• Dropped support for Python 3.3.

• Dropped support for versions of Twisted older than 15.2 (or whenever it was that twisted.logger was
introduced).

• Dropped support for ujson.

3.3.14 1.0.0

Eliot is stable, and has been for a while, so switching to v1.0.

Features:

3.3. What’s New 15



Eliot Documentation, Release 1.13.0+0.ge858c8e

• New API: MessageType.log(), the equivalent of Message.log(), allows you to quickly create a new
typed log message and write it out.

• New APIs: eliot.current_action() returns the current Action, and Action.task_uuid is the
task’s UUID.

• You can now do with YOUR_ACTION().context() as action:, i.e. Action.context() con-
text manager returns the Action instance.

• ActionType.as_task no longer requires a logger argument, matching the other APIs where passing in a
logger is optional.

3.3.15 0.12.0

Features:

• Python 3.6 support.

Misc:

• Made test suite pass again with latest Hypothesis release.

3.3.16 0.11.0

Features:

• Eliot tasks can now more easily span multiple threads using the new eliot.preserve_context API.

• eliot-prettyprint command line tool now pretty prints field values in a more informative manner.

Bug fixes:

• eliot-prettyprint now handles unparseable lines by skipping formatting them rather than exiting.

3.3.17 0.10.1

Bug fixes:

• Fixed regression in 0.10.0: fix validation of failed actions and tracebacks with extracted additional fields.

3.3.18 0.10.0

Features:

• register_exception_extractor allows for more useful logging of failed actions and tracebacks by
extracting additional fields from exceptions.

• Python 3.5 support.

Bug fixes:

• Journald support works on Python 3.

16 Chapter 3. Documentation



Eliot Documentation, Release 1.13.0+0.ge858c8e

3.3.19 0.9.0

Features:

• Native journald support.

• eliot-prettyprint is a command-line tool that formats JSON Eliot messages into a more human-friendly
format.

• eliot.logwriter.ThreadedWriter is a Twisted non-blocking wrapper for any blocking destination.

3.3.20 0.8.0

Features:

• Message.log will log a new message, combining the existing Message.new and Message.write.

• write_traceback and writeFailure no longer require a Logger; they now default to using the global
one.

• The logs written with redirectLogsForTrial are now written in JSON format, rather than with
pformat.

Bug fixes:

• FileDestination will now call flush() on the given file object after writing the log message. Previously
log messages would not end up being written out until the file buffer filled up.

• Each Message logged outside the context of an action now gets a unique task_id.

3.3.21 0.7.0

• Creating your own Logger instances is no longer necessary; all relevant APIs now default to using a global
one. A new testing decorator (eliot.testing.capture_logging) was added to capture global logging.

• Support positional Field-instance arguments to fields() to make combining existing field types and simple
fields more convenient. Contributed by Jonathan Jacobs.

• write_traceback and writeFailure no longer require a system argument, as the combination of
traceback and action context should suffice to discover the origin of the problem. This is a minor change to
output format as the field is also omitted from the resulting eliot:traceback messages.

• The validate_logging testing utility now skips validation when the decorated test method raises
SkipTest.

• Exceptions in destinations are now handled better: instead of being dropped silently an attempt is made to log a
message about the problem. If that also fails then the exception is dropped.

3.3.22 0.6.0

Warning: Incompatible output format change! In previous versions the ordering of messages and actions was
ambiguous and could not be deduced from out-of-order logs, and even where it was possible sorting correctly was
difficult. To fix this the action_counter field was removed and now all messages can be uniquely located
within a specific task by the values in an improved task_level field.

Features:

3.3. What’s New 17



Eliot Documentation, Release 1.13.0+0.ge858c8e

• Eliot tasks can now span multiple processes and threads, allowing for easy tracing of actions in complex and
distributed applications.

• eliot.add_global_fields allows adding fields with specific values to all Eliot messages logged by your program.
This can be used to e.g. distinguish between log messages from different processes by including relevant iden-
tifying information.

Bug fixes:

• On Python 3 files that accept unicode (e.g. sys.stdout) should now work.

3.3.23 0.5.0

Features:

• Added support for Python 3.4.

• Most public methods and functions now have underscore-based equivalents to the camel case versions, e.g.
eliot.write_traceback and eliot.writeTraceback, for use in PEP 8 styled programs. Twisted-
facing APIs and pyunit assertions do not provide these additional APIs, as camel-case is the native idiom.

• eliot.to_file outputs log messages to a file.

• Documented how to load Eliot logging into ElasticSearch via Logstash.

• Documentation has been significantly reorganized.

3.3.24 0.4.0

Note that this is the last release that will make incompatible API changes without interim deprecation warnings.

Incompatible changes from 0.3.0:

• Logger no longer does JSON serialization; it’s up to destinations to decide how to serialize the dictionaries
they receive.

• Timestamps are no longer encoded in TAI64N format; they are now provided as seconds since the Unix epoch.

• ActionType no longer supports defining additional failure fields, and therefore accepts one argument less.

• Action.runCallback and Action.finishAfter have been removed, as they are replaced by
DeferredContext (see below).

Features:

• Added a simpler API (fields()) for defining fields for ActionType and MessageType.

• Added support for Python 3.3.

• Actions can now be explicitly finished using a public API: Action.finish().

• Action.context() context manager allows setting an action context without finishing the action when
exiting the block.

• Added a new API for Twisted Deferred support: eliot.twisted.DeferredContext.

• eliot.twisted.redirectLogsForTrialwill redirect Eliot logs to Twisted’s logs when running under
the trial test runner.

18 Chapter 3. Documentation



Eliot Documentation, Release 1.13.0+0.ge858c8e

3.4 Generating Logs

3.4.1 Actions and Tasks

Actions: A Start and a Finish

A higher-level construct than messages is the concept of an action. An action can be started, and then finishes either
successfully or with some sort of an exception. Success in this case simply means no exception was thrown; the result
of an action may be a successful response saying “this did not work”. Log messages are emitted for action start and
finish.

Actions are also nested; one action can be the parent of another. An action’s parent is deduced from the Python call
stack and context managers like Action.context(). Log messages will also note the action they are part of if
they can deduce it from the call stack. The result of all this is that you can trace the operation of your code as it logs
various actions, and see a narrative of what happened and what caused it to happen.

Logging Actions

Here’s a basic example of logging an action:

from eliot import start_action

with start_action(action_type=u"store_data"):
x = get_data()
store_data(x)

This will log an action start message and if the block finishes successfully an action success message. If an exception
is thrown by the block then an action failure message will be logged along with the exception type and reason as
additional fields. Each action thus results in two messages being logged: at the start and finish of the action. No
traceback will be logged so if you want a traceback you will need to do so explicitly. Notice that the action has a
name, with a subsystem prefix. Again, this should be a logical name.

Note that all code called within this block is within the context of this action. While running the block of code within
the with statement new actions created with start_actionwill get the top-level start_action as their parent.

Logging Functions

If you want to log the inputs and results of a function, you can use the log_call decorator:

from eliot import log_call

@log_call
def calculate(x, y):

return x * y

This will log an action of type calculate with arguments x and y, as well as logging the result. You can also
customize the output:

from eliot import log_call

@log_call(action_type="CALC", include_args=["x"], include_result=False)
def calculate(x, y):

return x * y

This changes the action type to CALC, logs only the x argument, and doesn’t log the result.

3.4. Generating Logs 19



Eliot Documentation, Release 1.13.0+0.ge858c8e

Tasks: Top-level Actions

A top-level action with no parent is called a task, the root cause of all its child actions. E.g. a web server receiving a
new HTTP request would create a task for that new request. Log messages emitted from Eliot are therefore logically
structured as a forest: trees of actions with tasks at the root. If you want to ignore the context and create a top-level
task you can use the eliot.start_task API.

From Actions to Messages

While the logical structure of log messages is a forest of actions, the actual output is effectively a list of dictionaries
(e.g. a series of JSON messages written to a file). To bridge the gap between the two structures each output message
contains special fields expressing the logical relationship between it and other messages:

• task_uuid: The unique identifier of the task (top-level action) the message is part of.

• task_level: The specific location of this message within the task’s tree of actions. For example, [3, 2,
4] indicates the message is the 4th child of the 2nd child of the 3rd child of the task.

Consider the following code sample:

from eliot import start_action, start_task

with start_task(action_type="parent") as action:
action.log(message_type="info", x=1)
with start_action(action_type="child") as action:

action.log(message_type="info", x=2)
raise RuntimeError("ono")

All these messages will share the same UUID in their task_uuid field, since they are all part of the same high-level
task. If you sort the resulting messages by their task_level you will get the tree of messages:

task_level=[1] action_type="parent" action_status="started"
task_level=[2] message_type="info" x=1

task_level=[3, 1] action_type="child" action_status="started"
task_level=[3, 2] message_type="info" x=2
task_level=[3, 3] action_type="child" action_status="succeeded"

task_level=[4] action_type="parent" action_status="failed" exception="exceptions.
→˓RuntimeError" reason="ono"

Action Fields

You can add fields to both the start message and the success message of an action.

from eliot import start_action

with start_action(action_type=u"yourapp:subsystem:frob",
# Fields added to start message only:
key=123, foo=u"bar") as action:

x = _beep(123)
result = frobinate(x)
# Fields added to success message only:
action.add_success_fields(result=result)

If you want to include some extra information in case of failures beyond the exception you can always log a regular
message with that information. Since the message will be recorded inside the context of the action its information will
be clearly tied to the result of the action by the person (or code!) reading the logs later on.

20 Chapter 3. Documentation



Eliot Documentation, Release 1.13.0+0.ge858c8e

Using Generators

Generators (functions with yield) and context managers (with X:) don’t mix well in Python. So if you’re going
to use with start_action() in a generator, just make sure it doesn’t wrap a yield and you’ll be fine.

Here’s what you SHOULD NOT DO:

def generator():
with start_action(action_type="x"):

# BAD! DO NOT yield inside a start_action() block:
yield make_result()

Here’s what can do instead:

def generator():
with start_action(action_type="x"):

result = make_result()
# This is GOOD, no yield inside the start_action() block:
yield result

Non-Finishing Contexts

Sometimes you want to have the action be the context for other messages but not finish automatically when the block
finishes. You can do so with Action.context(). You can explicitly finish an action by calling eliot.Action.
finish. If called with an exception it indicates the action finished unsuccessfully. If called with no arguments it
indicates that the action finished successfully.

from eliot import start_action

action = start_action(action_type=u"yourapp:subsystem:frob")
try:

with action.context():
x = _beep()

with action.context():
frobinate(x)

# Action still isn't finished, need to so explicitly.
except FrobError as e:

action.finish(e)
else:

action.finish()

The context() method returns the Action:

from eliot import start_action

with start_action(action_type=u"your_type").context() as action:
# do some stuff...
action.finish()

You shouldn’t log within an action’s context after it has been finished:

from eliot import start_action

with start_action(action_type=u"message_late").context() as action:
action.log(message_type=u"ok")
# finish the action:

(continues on next page)

3.4. Generating Logs 21



Eliot Documentation, Release 1.13.0+0.ge858c8e

(continued from previous page)

action.finish()
# Don't do this! This message is being added to a finished action!
action.log(message_type=u"late")

As an alternative to with, you can also explicitly run a function within the action context:

from eliot import start_action

action = start_action(action_type=u"yourapp:subsystem:frob")
# Call do_something(x=1) in context of action, return its result:
result = action.run(do_something, x=1)

Getting the Current Action

Sometimes it can be useful to get the current action. For example, you might want to record the current task UUID for
future reference, in a bug report for example. You might also want to pass around the Action explicitly, rather than
relying on the implicit context.

You can get the current Action by calling eliot.current_action(). For example:

from eliot import current_action

def get_current_uuid():
return current_action().task_uuid

3.4.2 Messages

Sometimes you don’t want to generate actions. sometimes you just want an individual isolated message, the way
traditional logging systems work. Here’s how to do that.

When you have an action

If you already have an action object, you can log a message in that action’s context:

from eliot import start_action

class YourClass(object):
def run(self):

with start_action(action_type="myaction") as ctx:
ctx.log(message_type="mymessage", key="abc", key2=4)

If you don’t have an action

If you don’t have a reference to an action, or you’re worried the function will sometimes be called outside the context
of any action at all, you can use log_message:

from eliot import log_message

def run(x):
log_message(message_type="in_run", xfield=x)

22 Chapter 3. Documentation



Eliot Documentation, Release 1.13.0+0.ge858c8e

The main downside to using this function is that it’s a little slower, since it needs to handle the case where there is no
action in context.

3.4.3 Errors and Exceptions

Exceptions and Tracebacks

If you are using actions you don’t need to do anything special to log exceptions: if an exception is thrown within the
context of an action and not caught, the action will be marked as failed and the exception will be logged with it.

If you get a completely unexpected exception you may wish to log a traceback to aid debugging:

from eliot import write_traceback

class YourClass(object):

def run(self):
try:

dosomething()
except:

write_traceback()

You can also pass in the output of sys.exc_info():

import sys
from eliot import write_traceback

write_traceback(exc_info=sys.exc_info())

Custom Exception Logging

By default both failed actions and tracebacks log the class and string-representation of the logged exception. You can
add additional fields to these messages by registering a callable that converts exceptions into fields. If no extraction
function is registered for a class Eliot will look for registered functions for the exception’s base classes.

For example, the following registration means all failed actions that fail with a MyException will have a code field
in the action end message, as will tracebacks logged with this exception:

class MyException(Exception):
def __init__(self, code):

self.code = code

from eliot import register_exception_extractor
register_exception_extractor(MyException, lambda e: {"code": e.code})

By default Eliot will automatically extract fields from OSError, IOError and other subclasses of Python’s
EnvironmentError.

3.4.4 Log Levels

Eliot does not have a native set of logging levels, as some systems do. It does distinguish between normal log messages
and errors—failed actions and tracebacks can both be considered as errors.

However, you can add log levels yourself.

3.4. Generating Logs 23



Eliot Documentation, Release 1.13.0+0.ge858c8e

Generating messages with log levels

All you need to do to add a log level is just add an appropriate field to your logging, for example:

from eliot import start_action

with start_action(action_type=u"store_data", log_level="INFO"):
x = get_data()
store_data(x)

Choosing log levels

In an excellent article by Daniel Lebroro, he explains that he chose the logging levels “for test environment”, “for
production environment”, “investigate tomorrow”, and “wake me in the middle of the night”. These seem rather more
informative and useful than “INFO” or “WARN”.

If you are implementing a service you will be running, consider choosing log levels that are meaningful on an organi-
zational level.

3.4.5 Integrating and Migrating Existing Logging

If you have an existing code base, you likely have existing log messages. This document will explain how to migrate
and integrate existing logging into your new Eliot log setup. In particular, this will focus on the Python standard library
logging package, but the same principles apply to other logging libraries.

Route existing logs to Eliot

Eliot includes a logging.Handler that can take standard library log messages and route them into Eliot. These
log messages will automatically appear in the correct place in the action tree! Once you add actions to your code these
log messages will automatically benefit from Eliot’s causal information.

To begin with, however, we’ll just add routing of log messages to Eliot:

# Add Eliot Handler to root Logger. You may wish to only route specific
# Loggers to Eliot.
import logging
from eliot.stdlib import EliotHandler
logging.getLogger().addHandler(EliotHandler())

Add actions at entry points and other key points

Simply by adding a few key actions—the entry points to the code, as well as key sub-actions—you can start getting
value from Eliot’s functionality while still getting information from your existing logs. You can leave existing log
messages in place, replacing them with Eliot logging opportunistically; they will still be included in your output.

"""
Example of routing standard library logging to Eliot.

The assumption is you have legacy logging using stdlib, and are switching over
to Eliot.
"""

(continues on next page)

24 Chapter 3. Documentation

https://labs.ig.com/logging-level-wrong-abstraction


Eliot Documentation, Release 1.13.0+0.ge858c8e

(continued from previous page)

import logging
import sys

from eliot.stdlib import EliotHandler
from eliot import start_action, to_file

# A Logger left over from before switch to Eliot
LEGACY_LOGGER = logging.Logger("mypackage")

def do_a_thing(i):
with start_action(action_type="mypackage:do_a_thing"):

# run your business logic....
if i == 3:

LEGACY_LOGGER.error("The number 3 is a bad number, don't use it.")
raise ValueError("I hate the number 3")

def main():
with start_action(action_type="mypackage:main"):

for i in [1, 3]:
try:

do_a_thing(i)
except ValueError:

LEGACY_LOGGER.info("Number {} was rejected.".format(i))

if __name__ == '__main__':
# Hook up stdlib logging to Eliot:
LEGACY_LOGGER.addHandler(EliotHandler())
# Write Eliot logs to stdout:
to_file(sys.stdout)
# Run the code:
main()

The stdlib logging messages will be included in the correct part of the tree:

$ python examples/stdlib.py | eliot-tree
3f465ee3-7fa9-40e2-8b20-9c0595612a8b

mypackage:main/1 started
timestamp: 2018-07-15 16:50:39.230467
mypackage:do_a_thing/2/1 started

timestamp: 2018-07-15 16:50:39.230709
mypackage:do_a_thing/2/2 succeeded

timestamp: 2018-07-15 16:50:39.230836
mypackage:do_a_thing/3/1 started

timestamp: 2018-07-15 16:50:39.230980
eliot:stdlib/3/2

log_level: ERROR
logger: mypackage
message: The number 3 is a bad number, don't use it.
timestamp: 2018-07-15 16:50:39.231157

mypackage:do_a_thing/3/3 failed
exception: builtins.ValueError
reason: I hate the number 3
timestamp: 2018-07-15 16:50:39.231364

eliot:stdlib/4
(continues on next page)

3.4. Generating Logs 25



Eliot Documentation, Release 1.13.0+0.ge858c8e

(continued from previous page)

log_level: INFO
logger: mypackage
message: Number 3 was rejected.
timestamp: 2018-07-15 16:50:39.231515

mypackage:main/5 succeeded
timestamp: 2018-07-15 16:50:39.231641

3.4.6 Spanning Processes and Threads

Introduction

In many applications we are interested in tasks that exist in more than just a single thread or in a single process. For
example, one server may send a request to another server over a network and we would like to trace the combined
operation across both servers’ logs. To make this as easy as possible Eliot supports serializing task identifiers for
transfer over the network (or between threads), allowing tasks to span multiple processes.

Cross-Thread Tasks

To trace actions across threads Eliot provides the eliot.preserve_context API. It takes a callable that is about
to be passed to a thread constructor and preserves the current Eliot context, returning a new callable. This new callable
should only be used, in the thread where it will run; it will restore the Eliot context and run the original function inside
of it. For example:

#!/usr/bin/env python

"""
Example of an Eliot action context spanning multiple threads.
"""

from __future__ import unicode_literals

from threading import Thread
from sys import stdout

from eliot import to_file, preserve_context, start_action
to_file(stdout)

def add_in_thread(x, y):
with start_action(action_type="in_thread", x=x, y=y) as context:

context.add_success_fields(result=x+y)

with start_action(action_type="main_thread"):
# Preserve Eliot context and restore in new thread:
thread = Thread(target=preserve_context(add_in_thread),

kwargs={"x": 3, "y": 4})
thread.start()
# Wait for the thread to exit:
thread.join()

Here’s what the result is when run:

26 Chapter 3. Documentation



Eliot Documentation, Release 1.13.0+0.ge858c8e

$ python examples/cross_thread.py | eliot-tree
11a85c42-a13f-491c-ad44-c48b2efad0e3
+-- main_thread@1/started

+-- eliot:remote_task@2,1/started
+-- in_thread@2,2,1/started

|-- x: 3
`-- y: 4
+-- in_thread@2,2,2/succeeded

|-- result: 7
+-- eliot:remote_task@2,3/succeeded

+-- main_thread@3/succeeded

Cross-Process Tasks

eliot.Action.serialize_task_id() can be used to create some bytes identifying a particular location
within a task. eliot.Action.continue_task() converts a serialized task identifier into an eliot.Action
and then starts the Action. The process which created the task serializes the task identifier and sends it over the
network to the process which will continue the task. This second process deserializes the identifier and uses it as a
context for its own messages.

In the following example the task identifier is added as a header to a HTTP request:

"""
Cross-process log tracing: HTTP client.
"""
from __future__ import unicode_literals

import sys
import requests

from eliot import to_file, start_action, add_global_fields
add_global_fields(process="client")
to_file(sys.stdout)

def remote_divide(x, y):
with start_action(action_type="http_request", x=x, y=y) as action:

task_id = action.serialize_task_id()
response = requests.get(

"http://localhost:5000/?x={}&y={}".format(x, y),
headers={"x-eliot-task-id": task_id})

response.raise_for_status() # ensure this is a successful response
result = float(response.text)
action.add_success_fields(result=result)
return result

if __name__ == '__main__':
with start_action(action_type="main"):

remote_divide(int(sys.argv[1]), int(sys.argv[2]))

The server that receives the request then extracts the identifier:

"""
Cross-process log tracing: HTTP server.
"""

(continues on next page)

3.4. Generating Logs 27



Eliot Documentation, Release 1.13.0+0.ge858c8e

(continued from previous page)

from __future__ import unicode_literals

import sys
from flask import Flask, request

from eliot import to_file, Action, start_action, add_global_fields
add_global_fields(process="server")
to_file(sys.stdout)

app = Flask("server")

def divide(x, y):
with start_action(action_type="divide", x=x, y=y) as action:

result = x / y
action.add_success_fields(result=result)
return result

@app.route("/")
def main():

with Action.continue_task(task_id=request.headers["x-eliot-task-id"]):
x = int(request.args["x"])
y = int(request.args["y"])
return str(divide(x, y))

if __name__ == '__main__':
app.run()

Tracing logs across multiple processes makes debugging problems dramatically easier. For example, let’s run the
following:

$ python examples/cross_process_server.py > server.log
$ python examples/cross_process_client.py 5 0 > client.log

Here are the resulting combined logs, as visualized by eliot-tree. The reason the client received a 500 error code is
completely obvious in these logs:

$ cat client.log server.log | eliot-tree
1e0be9be-ae56-49ef-9bce-60e850a7db09
+-- main@1/started

|-- process: client
+-- http_request@2,1/started

|-- process: client
|-- x: 3
`-- y: 0
+-- eliot:remote_task@2,2,1/started

|-- process: server
+-- divide@2,2,2,1/started

|-- process: server
|-- x: 3
`-- y: 0
+-- divide@2,2,2,2/failed

|-- exception: exceptions.ZeroDivisionError

(continues on next page)

28 Chapter 3. Documentation

https://warehouse.python.org/project/eliot-tree/


Eliot Documentation, Release 1.13.0+0.ge858c8e

(continued from previous page)

|-- process: server
|-- reason: integer division or modulo by zero

+-- eliot:remote_task@2,2,3/failed
|-- exception: exceptions.ZeroDivisionError
|-- process: server
|-- reason: integer division or modulo by zero

+-- http_request@2,3/failed
|-- exception: requests.exceptions.HTTPError
|-- process: client
|-- reason: 500 Server Error: INTERNAL SERVER ERROR

+-- main@3/failed
|-- exception: requests.exceptions.HTTPError
|-- process: client
|-- reason: 500 Server Error: INTERNAL SERVER ERROR

Cross-Thread Tasks

eliot.Action objects should only be used on the thread that created them. If you want your task to span multiple
threads use the API described above.

Ensuring Message Uniqueness

Serialized task identifiers should be used at most once. For example, every time a remote operation is retried a new call
to serialize_task_id() should be made to create a new identifier. Otherwise there is a chance that you will end
up with messages that have duplicate identification (i.e. two messages with matching task_uuid and task_level
values), making it more difficult to trace causality.

If this is not possible you may wish to start a new Eliot task upon receiving a remote request, while still making sure
to log the serialized remote task identifier. The inclusion of the remote task identifier will allow manual or automated
reconstruction of the cross-process relationship between the original and new tasks.

Another alternative in some cases is to rely on unique process or thread identity to distinguish between the log mes-
sages. For example if the same serialized task identifier is sent to multiple processes, log messages within the task can
still have a unique identity if a process identifier is included with each message.

Logging Output for Multiple Processes

If logs are being combined from multiple processes an identifier indicating the originating process should be included
in log messages. This can be done a number of ways, e.g.:

• Have your destination add another field to the output.

• Rely on Logstash, or whatever your logging pipeline tool is, to add a field when shipping the logs to your
centralized log store.

3.4.7 Unit Testing Your Logging

Now that you’ve got some code emitting log messages (or even better, before you’ve written the code) you can write
unit tests to verify it. Given good test coverage all code branches should already be covered by tests unrelated to
logging. Logging can be considered just another aspect of testing those code branches.

Rather than recreating all those tests as separate functions Eliot provides a decorator the allows adding logging asser-
tions to existing tests.

3.4. Generating Logs 29



Eliot Documentation, Release 1.13.0+0.ge858c8e

Linting your logs

Decorating a test function with eliot.testing.capture_logging validation will ensure that:

1. You haven’t logged anything that isn’t JSON serializable.

2. There are no unexpected tracebacks, indicating a bug somewhere in your code.

from eliot.testing import capture_logging

class MyTest(unittest.TestCase):
@capture_logging(None)
def test_mytest(self, logger):

call_my_function()

Making assertions about the logs

You can also ensure the correct messages were logged.

from eliot import log_message

class UserRegistration(object):

def __init__(self):
self.db = {}

def register(self, username, password, age):
self.db[username] = (password, age)
log_message(message_type="user_registration",

username=username, password=password,
age=age)

Here’s how we’d test it:

from unittest import TestCase
from eliot import MemoryLogger
from eliot.testing import assertContainsFields, capture_logging

from myapp.registration import UserRegistration

class LoggingTests(TestCase):
def assertRegistrationLogging(self, logger):

"""
Logging assertions for test_registration.
"""
self.assertEqual(len(logger.messages), 1)
msg = logger.messages[0]
assertContainsFields(self, msg,

{u"username": u"john",
u"password": u"password",
u"age": 12}))

@capture_logging(assertRegistrationLogging)
def test_registration(self, logger):

"""
Registration adds entries to the in-memory database.

(continues on next page)

30 Chapter 3. Documentation



Eliot Documentation, Release 1.13.0+0.ge858c8e

(continued from previous page)

"""
registry = UserRegistration()
registry.register(u"john", u"password", 12)
self.assertEqual(registry.db[u"john"], (u"passsword", 12))

Testing Tracebacks

Tests decorated with @capture_logging will fail if there are any tracebacks logged (using write_traceback
or writeFailure) on the theory that these are unexpected errors indicating a bug. If you expected a particular
traceback to be logged you can call MemoryLogger.flush_tracebacks, after which it will no longer cause a
test failure. The result will be a list of traceback message dictionaries for the particular exception.

from unittest import TestCase
from eliot.testing import capture_logging

class MyTests(TestCase):
def assertMythingBadPathLogging(self, logger):

messages = logger.flush_tracebacks(OSError)
self.assertEqual(len(messages), 1)

@capture_logging(assertMythingBadPathLogging)
def test_mythingBadPath(self, logger):

mything = MyThing()
# Trigger an error that will cause a OSError traceback to be logged:
self.assertFalse(mything.load("/nonexistent/path"))

Testing Message and Action Structure

Eliot provides utilities for making assertions about the structure of individual messages and actions. The simplest
method is using the assertHasMessage utility function which asserts that a message of a given message type has
the given fields:

from eliot.testing import assertHasMessage, capture_logging

class LoggingTests(TestCase):
@capture_logging(assertHasMessage, "user_registration",

{u"username": u"john",
u"password": u"password",
u"age": 12})

def test_registration(self, logger):
"""
Registration adds entries to the in-memory database.
"""
registry = UserRegistration()
registry.register(u"john", u"password", 12)
self.assertEqual(registry.db[u"john"], (u"passsword", 12))

assertHasMessage returns the found message and can therefore be used within more complex assertions.
assertHasAction provides similar functionality for actions (see example below).

More generally, eliot.testing.LoggedAction and eliot.testing.LoggedMessage are utility
classes to aid such testing. LoggedMessage.of_type lets you find all messages of a specific message type.
A LoggedMessage has an attribute message which contains the logged message dictionary. For example, we
could rewrite the registration logging test above like so:

3.4. Generating Logs 31



Eliot Documentation, Release 1.13.0+0.ge858c8e

from eliot.testing import LoggedMessage, capture_logging

class LoggingTests(TestCase):
def assertRegistrationLogging(self, logger):

"""
Logging assertions for test_registration.
"""
logged = LoggedMessage.of_type(logger.messages, "user_registration")[0]
assertContainsFields(self, logged.message,

{u"username": u"john",
u"password": u"password",
u"age": 12}))

@capture_logging(assertRegistrationLogging)
def test_registration(self, logger):

"""
Registration adds entries to the in-memory database.
"""
registry = UserRegistration()
registry.register(u"john", u"password", 12)
self.assertEqual(registry.db[u"john"], (u"passsword", 12))

Similarly, LoggedAction.of_type finds all logged actions of a specific action type. A LoggedAction in-
stance has start_message and end_message containing the respective message dictionaries, and a children
attribute containing a list of child LoggedAction and LoggedMessage. That is, a LoggedAction knows about
the messages logged within its context. LoggedAction also has a utility method descendants() that returns an
iterable of all its descendants. We can thus assert that a particular message (or action) was logged within the context
of another action.

For example, let’s say we have some code like this:

from eliot import start_action, Message

class Search:
def search(self, servers, database, key):

with start_action(action_type="log_search", database=database, key=key):
for server in servers:

Message.log(message_type="log_check", server=server)
if server.check(database, key):

return True
return False

We want to assert that the “log_check” message was written in the context of the “log_search” action. The test would
look like this:

from eliot.testing import LoggedAction, LoggedMessage, capture_logging
import searcher

class LoggingTests(TestCase):
@capture_logging(None)
def test_logging(self, logger):

searcher = Search()
servers = [buildServer(), buildServer()]

searcher.search(servers, "users", "theuser")
action = LoggedAction.of_type(logger.messages, "log_search")[0]
messages = LoggedMessage.of_type(logger.messages, "log_check")

(continues on next page)

32 Chapter 3. Documentation



Eliot Documentation, Release 1.13.0+0.ge858c8e

(continued from previous page)

# The action start message had the appropriate fields:
assertContainsFields(self, action.start_message,

{"database": "users", "key": "theuser"})
# Messages were logged in the context of the action
self.assertEqual(action.children, messages)
# Each message had the respective server set.
self.assertEqual(servers, [msg.message["server"] for msg in messages])

Or we can simplify further by using assertHasMessage and assertHasAction:

from eliot.testing import LoggedAction, LoggedMessage, capture_logging
import searcher

class LoggingTests(TestCase):
@capture_logging(None)
def test_logging(self, logger):

searcher = Search()
servers = [buildServer(), buildServer()]

searcher.search(servers, "users", "theuser")
action = assertHasAction(self, logger, "log_search", succeeded=True,

startFields={"database": "users",
"key": "theuser"})

# Messages were logged in the context of the action
messages = LoggedMessage.of_type(logger.messages, "log_check")
self.assertEqual(action.children, messages)
# Each message had the respective server set.
self.assertEqual(servers, [msg.message["server"] for msg in messages])

Custom JSON encoding

Just like a FileDestination can have a custom JSON encoder, so can your tests, so you can validate your
messages with that JSON encoder:

from unittest import TestCase
from eliot.json import EliotJSONEncoder
from eliot.testing import capture_logging

class MyClass:
def __init__(self, x):

self.x = x

class MyEncoder(EliotJSONEncoder):
def default(self, obj):

if isinstance(obj, MyClass):
return {"x": obj.x}

return EliotJSONEncoder.default(self, obj)

class LoggingTests(TestCase):
@capture_logging(None, encoder_=MyEncoder)
def test_logging(self, logger):

# Logged messages will be validated using MyEncoder....
...

3.4. Generating Logs 33



Eliot Documentation, Release 1.13.0+0.ge858c8e

Notice that the hyphen after encoder_ is deliberate: by default keyword arguments are passed to the assertion
function (the first argument to @capture_logging) so it’s marked this way to indicate it’s part of Eliot’s API.

Custom testing setup

In some cases @capture_logging may not do what you want. You can achieve the same effect, but with more
control, with some lower-level APIs:

from eliot import MemoryLogger
from eliot.testing import swap_logger, check_for_errors

def custom_capture_logging():
# Replace default logging setup with a testing logger:
test_logger = MemoryLogger()
original_logger = swap_logger(test_logger)

try:
run_some_code()

finally:
# Restore original logging setup:
swap_logger(original_logger)
# Validate log messages, check for tracebacks:
check_for_errors(test_logger)

3.4.8 Using Types to Structure Messages and Actions

Why Typing?

So far we’ve been creating messages and actions in an unstructured manner. This means it’s harder to support Python
objects that aren’t built-in and to validate message structure. Moreover there’s no documentation of what fields mes-
sages and action messages expect.

To improve this we introduce an optional API for creating actions and standalone messages: ActionType and
MessageType. Here’s an example demonstrating how we create a message type, bind some values and then log the
message:

from eliot import Field, MessageType

class Coordinate(object):
def __init__(self, x, y):

self.x = self.x
self.y = self.y

# This field takes a complex type that will be stored in a single Field,
# so we pass in a serializer function that converts it to a list with two
# ints:
_LOCATION = Field(u"location", lambda loc: [loc.x, loc.y], u"The location.")
# These fields are just basic supported types, in this case int and unicode
# respectively:
_COUNT = Field.for_types(u"count", [int], u"The number of items to deliver.")
_NAME = Field.for_types(u"name", [unicode], u"The name of the delivery person.")

# This is a type definition for a message. It is used to hook up
# serialization of field values, and for message validation in unit tests:

(continues on next page)

34 Chapter 3. Documentation



Eliot Documentation, Release 1.13.0+0.ge858c8e

(continued from previous page)

LOG_DELIVERY_SCHEDULED = MessageType(
u"pizzadelivery:schedule",
[_LOCATION, _COUNT, _NAME],
u"A pizza delivery has been scheduled.")

def deliver_pizzas(deliveries):
person = get_free_delivery_person()
for location, count in deliveries:

delivery_database.insert(person, location, count)
LOG_DELIVERY_SCHEDULED.log(

name=person.name, count=count, location=location)

Fields

A Field instance is used to validate fields of messages, and to serialize rich types to the built-in supported types. It
is created with the name of the field, a serialization function that converts the input to an output and a description. The
serialization function must return a result that is JSON-encodable. You can also pass in an extra validation function. If
you pass this function in it will be called with values that are being validated; if it raises eliot.ValidationError
that value will fail validation.

A couple of utility functions allow creating specific types of Field instances. Field.for_value returns a Field
that only can have a single value. More generally useful, Field.for_types returns a Field that can only be one
of certain specific types: some subset of unicode, bytes, int, float, bool, list and dict as well as None
which technically isn’t a class. As always, bytes must only contain UTF-8 encoded Unicode.

from eliot import Field

def userToUsername(user):
"""
Extract username from a User object.
"""
return user.username

USERNAME = Field(u"username", userToUsername, u"The name of the user.")

# Validation is useful for unit tests and catching bugs; it's not used in
# the actual logging code path. We therefore don't bother catching things
# we'd do in e.g. web form validation.
def _validateAge(value):

if value is not None and value < 0:
raise ValidationError("Field 'age' must be positive:", value)

AGE = Field.for_types(u"age", [int, None],
u"The age of the user, might be None if unknown",
_validateAge)

Message Types

Now that you have some fields you can create a custom MessageType. This takes a message name which will be
put in the message_type field of resulting messages. It also takes a list of Field instances and a description.

from eliot import MessageType, Field
USERNAME = Field.for_types("username", [str])

(continues on next page)

3.4. Generating Logs 35



Eliot Documentation, Release 1.13.0+0.ge858c8e

(continued from previous page)

AGE = Field.for_types("age", [int])

LOG_USER_REGISTRATION = MessageType(u"yourapp:authentication:registration",
[USERNAME, AGE],
u"We've just registered a new user.")

Since this syntax is rather verbose a utility function called fields is provided which creates a list of Field
instances for you, with support to specifying the types of the fields. The equivalent to the code above is:

from eliot import MessageType, fields

LOG_USER_REGISTRATION = MessageType(u"yourapp:authentication:registration",
fields(username=str, age=int))

Or you can even use existing Field instances with fields:

from eliot import MessageType, Field, fields

USERNAME = Field.for_types("username", [str])

LOG_USER_REGISTRATION = MessageType(u"yourapp:authentication:registration",
fields(USERNAME, age=int))

Given a MessageType you can create a Message instance with the message_type field pre-populated by calling
the type. You can then use it the way you would normally use Message, e.g. bind() or write(). You can also
just call MessageType.log() to write out a message directly:

# Simple version:
LOG_USER_REGISTRATION.log(username=user, age=193)
# Equivalent more complex API:
LOG_USER_REGISTRATION(username=user).bind(age=193).write()

A Message created from a MessageType will automatically use the MessageType Field instances to serialize
its fields.

Keep in mind that no validation is done when messages are created. Instead, validation is intended to be done in your
unit tests. If you’re not unit testing all your log messages you’re doing it wrong. Luckily, Eliot makes it pretty easy to
test logging as we’ll see in a bit.

Action Types

Similarly to MessageType you can also create types for actions. Unlike a MessageType you need two sets of
fields: one for action start, one for success.

from eliot import ActionType, fields

LOG_USER_SIGNIN = ActionType(u"yourapp:authentication:signin",
# Start message fields:
fields(username=str),
# Success message fields:
fields(status=int),
# Description:
u"A user is attempting to sign in.")

Calling the resulting instance is equivalent to start_action. For start_task you can call
LOG_USER_SIGNIN.as_task.

36 Chapter 3. Documentation



Eliot Documentation, Release 1.13.0+0.ge858c8e

def signin(user, password):
with LOG_USER_SIGNIN(username=user) as action:

status = user.authenticate(password)
action.add_success_fields(status=status)

return status

Again, as with MessageType, field values will be serialized using the Field definitions in the ActionType.

Serialization Errors

While validation of field values typically only happens when unit testing, serialization must run in the normal logging
code path. Eliot tries to very hard never to raise exceptions from the log writing code path so as not to prevent actual
code from running. If a message fails to serialize then a eliot:traceback message will be logged, along with a
eliot:serialization_failure message with an attempt at showing the message that failed to serialize.

{"exception": "exceptions.ValueError",
"timestamp": "2013-11-22T14:16:51.386745Z",
"traceback": "Traceback (most recent call last):\n ... ValueError: invalid literal
→˓for int() with base 10: 'hello'\n",
"system": "eliot:output",
"reason": "invalid literal for int() with base 10: 'hello'",
"message_type": "eliot:traceback"}

{"timestamp": "2013-11-22T14:16:51.386827Z",
"message": "{u\"u'message_type'\": u\"'test'\", u\"u'field'\": u\"'hello'\", u\"u
→˓'timestamp'\": u\"'2013-11-22T14:16:51.386634Z'\"}",
"message_type": "eliot:serialization_failure"}

Testing

The eliot.testing.assertHasAction and assertHasMessage APIs accept ActionType and
MessageType instances, not just the action_type and message_type strings.

Any function decorated with @capture_logging will additionally validate messages that were created using
ActionType and MessageType using the applicable Field definitions. This will ensure you’ve logged all the
necessary fields, no additional fields, and used the correct types.

3.4.9 Asyncio/Trio Coroutine Support

As of Eliot 1.8, asyncio and trio coroutines have appropriate context propogation for Eliot, automatically.

Asyncio

On Python 3.7 or later, no particular care is needed. For Python 3.5 and 3.6 you will need to import either eliot (or
the backport package aiocontextvars) before you create your first event loop.

Here’s an example using aiohttp:

import asyncio
import aiohttp
from eliot import start_action, to_file
to_file(open("linkcheck.log", "w"))

(continues on next page)

3.4. Generating Logs 37



Eliot Documentation, Release 1.13.0+0.ge858c8e

(continued from previous page)

async def check_links(urls):
session = aiohttp.ClientSession()
with start_action(action_type="check_links", urls=urls):

for url in urls:
try:

with start_action(action_type="download", url=url):
async with session.get(url) as response:

response.raise_for_status()
except Exception as e:

raise ValueError(str(e))

try:
loop = asyncio.get_event_loop()
loop.run_until_complete(

check_links(["http://eliot.readthedocs.io", "http://nosuchurl"])
)

except ValueError:
print("Not all links were valid.")

And the resulting logs:

$ eliot-tree linkcheck.log
0a9a5e1b-330c-4251-b7db-fd3161403443

check_links/1 started 2019-04-06 19:49:16 0.535s
urls:

0: http://eliot.readthedocs.io
1: http://nosuchurl

download/2/1 started 2019-04-06 19:49:16 0.527s
url: http://eliot.readthedocs.io
download/2/2 succeeded 2019-04-06 19:49:16

download/3/1 started 2019-04-06 19:49:16 0.007s
url: http://nosuchurl
download/3/2 failed 2019-04-06 19:49:16

errno: -2
exception: aiohttp.client_exceptions.ClientConnectorError
reason: Cannot connect to host nosuchurl:80 ssl:None [Name or service

→˓not known]
check_links/4 failed 2019-04-06 19:49:16

exception: builtins.ValueError
reason: Cannot connect to host nosuchurl:80 ssl:None [Name or service not

→˓known]

Trio

Here’s an example of using Trio—we put the action outside the nursery so that it finishes only when the nursery shuts
down.

from eliot import start_action, to_file
import trio

to_file(open("trio.log", "w"))

async def say(message, delay):

(continues on next page)

38 Chapter 3. Documentation



Eliot Documentation, Release 1.13.0+0.ge858c8e

(continued from previous page)

with start_action(action_type="say", message=message):
await trio.sleep(delay)

async def main():
with start_action(action_type="main"):

async with trio.open_nursery() as nursery:
nursery.start_soon(say, "hello", 1)
nursery.start_soon(say, "world", 2)

trio.run(main)

And the resulting logs:

$ eliot-tree trio.log
93a4de27-8c95-498b-a188-f0e91482ad10

main/1 started 2019-04-10 21:07:20 2.003s
say/2/1 started 2019-04-10 21:07:20 2.002s

message: world
say/2/2 succeeded 2019-04-10 21:07:22

say/3/1 started 2019-04-10 21:07:20 1.001s
message: hello
say/3/2 succeeded 2019-04-10 21:07:21

main/4 succeeded 2019-04-10 21:07:22

If you put the start_action inside the nursery context manager:

1. The two say calls will be scheduled, but not started.

2. The parent action will end.

3. Only then will the child actions be created.

The result is somewhat confusing output. Trying to improve this situation is covered in issue #401.

3.4.10 Using Eliot with Twisted

Eliot provides a variety of APIs to support integration with the Twisted networking framework.

Non-blocking Destinations

eliot.logwriter.ThreadedWriter is a logging destination that wraps a blocking destination and writes to
it in a non-reactor thread. This is useful because it keeps the Twisted reactor from blocking, e.g. if you’re writing
to a log file and the hard drive is overloaded. ThreadedWriter is a Twisted Service and starting it will call
add_destinations for you and stopping it will call remove_destination; there is no need to call those
directly.

"""
Output an Eliot message to a log file using the threaded log writer.
"""
from __future__ import unicode_literals, print_function

from twisted.internet.task import react

from eliot.logwriter import ThreadedWriter
from eliot import log_message, FileDestination

(continues on next page)

3.4. Generating Logs 39

https://github.com/itamarst/eliot/issues/401
https://twistedmatrix.com


Eliot Documentation, Release 1.13.0+0.ge858c8e

(continued from previous page)

def main(reactor):
print("Logging to example-eliot.log...")
logWriter = ThreadedWriter(

FileDestination(file=open("example-eliot.log", "ab")), reactor)

# Manually start the service, which will add it as a
# destination. Normally we'd register ThreadedWriter with the usual
# Twisted Service/Application infrastructure.
logWriter.startService()

# Log a message:
log_message(message_type="test", value="hello", another=1)

# Manually stop the service.
done = logWriter.stopService()
return done

if __name__ == '__main__':
react(main, [])

If you want log rotation you can pass in an eliot.FileDestination wrapping one of the classes from
twisted.python.logfile as the destination file.

twisted.logger integration

If you wish you can direct Eliot logs to Twisted’s logging subsystem, if that is the primary logging system you’re
using.

from eliot import add_destinations
from eliot.twisted import TwistedDestination

add_destinations(TwistedDestination())

Trial Integration

If you’re using Twisted’s trial program to run your tests you can redirect your Eliot logs to Twisted’s logs by
calling eliot.twisted.redirectLogsForTrial(). This function will automatically detect whether or not
it is running under trial. If it is then you will be able to read your Eliot logs in _trial_temp/test.log,
where trial writes out logs by default. If it is not running under trial it will not do anything. In addition calling
it multiple times has the same effect as calling it once.

The way you use it is by putting it in your package’s __init__.py: it will do the right thing and only redirect if
you’re using trial. Take care if you are separately redirecting Twisted logs to Eliot; you should make sure not to
call redirectLogsForTrial in that case so as to prevent infinite loops.

Logging Failures

eliot.writeFailure is the equivalent of eliot.write_traceback, only for Failure instances:

40 Chapter 3. Documentation

https://twistedmatrix.com/documents/current/api/twisted.python.logfile.html


Eliot Documentation, Release 1.13.0+0.ge858c8e

from eliot import writeFailure

class YourClass(object):

def run(self):
d = dosomething()
d.addErrback(writeFailure)

Actions and inlineCallbacks

Eliot provides a decorator that is compatible with Twisted’s inlineCallbacks but which also behaves well with
Eliot’s actions. Simply substitute eliot.twisted.inline_callbacks for twisted.internet.defer.
inlineCallbacks in your code.

To understand why, consider the following example:

from eliot import start_action
from twisted.internet.defer import inlineCallbacks

@inlineCallbacks # don't use this in real code, use eliot.twisted.inline_callbacks
def go():

with start_action(action_type=u"yourapp:subsystem:frob") as action:
d = some_deferred_api()
x = yield d
action.log(message_type=u"some-report", x=x)

The action started by this generator remains active as yield d gives up control to the inlineCallbacks con-
troller. The next bit of code to run will be considered to be a child of action. Since that code may be any arbitrary
code that happens to get scheduled, this is certainly wrong.

Additionally, when the inlineCallbacks controller resumes the generator, it will most likely do so with no active
action at all. This means that the log message following the yield will be recorded with no parent action, also certainly
wrong.

These problems are solved by using eliot.twisted.inline_callbacks instead of twisted.internet.
defer.inlineCallbacks. The behavior of the two decorators is identical except that Eliot’s version will pre-
serve the generator’s action context and contain it within the generator. This extends the inlineCallbacks illusion
of “synchronous” code to Eliot actions.

Actions and Deferreds

An additional set of APIs is available to help log actions when using Deferreds. To understand why, consider the
following example:

from eliot import start_action

def go():
action = start_action(action_type=u"yourapp:subsystem:frob")
with action:

d = Deferred()
d.addCallback(gotResult, x=1)
return d

This has two problems. First, gotResult is not going to run in the context of the action. Second, the action finishes
once the with block finishes, i.e. before gotResult runs. If we want gotResult to be run in the context of the

3.4. Generating Logs 41



Eliot Documentation, Release 1.13.0+0.ge858c8e

action and to delay the action finish we need to do some extra work, and manually wrapping all callbacks would be
tedious.

To solve this problem you can use the eliot.twisted.DeferredContext class. It grabs the action context
when it is first created and provides the same API as Deferred (addCallbacks and friends), with the difference
that added callbacks run in the context of the action. When all callbacks have been added you can indicate that the
action should finish after those callbacks have run by calling DeferredContext.addActionFinish. As you
would expect, if the Deferred fires with a regular result that will result in success message. If the Deferred fires
with an errback that will result in failure message. Finally, you can unwrap the DeferredContext and access the
wrapped Deferred by accessing its result attribute.

from eliot import start_action
from eliot.twisted import DeferredContext

def go():
with start_action(action_type=u"your_type").context() as action:

d = DeferredContext(Deferred())
# gotResult(result, x=1) will be called in the context of the action:
d.addCallback(gotResult, x=1)
# After gotResult finishes, finish the action:
d.addActionFinish()
# Return the underlying Deferred:
return d.result

3.5 Outputting Logs

3.5.1 Configuring Logging Output

You can register “destinations” to handle logging output; a destination is a callable that takes a message dictionary.
For example, if we want to just print each new message:

import json, sys
from eliot import add_destinations

def stdout(message):
print(message)

add_destinations(stdout)

Before destinations are added

Up to a 1000 messages will be buffered in memory until the first set of destinations are added, at which point those
messages will be delivered to newly added set of destinations. This ensures that no messages will be lost if logging
happens during configuration but before a destination is added.

Outputting JSON to a file

Since JSON is a common output format, Eliot provides a utility class that logs to a file, eliot.
FileDestination(file=yourfile). Each Eliot message will be encoded in JSON and written on a new
line. As a short hand you can call eliot.to_file, which will create the destination and then add it automatically.
For example:

42 Chapter 3. Documentation



Eliot Documentation, Release 1.13.0+0.ge858c8e

from eliot import to_file
to_file(open("eliot.log", "ab"))

Note: This destination is blocking: if writing to a file takes a long time your code will not be able to proceed
until writing is done. If you’re using Twisted you can wrap a eliot.FileDestination with a non-blocking
eliot.logwriter.ThreadedWriter. This allows you to log to a file without blocking the Twisted reactor.

Customizing JSON Encoding

If you’re using Eliot’s JSON output you may wish to customize encoding. By default Eliot uses eliot.json.
EliotJSONEncoder (a subclass of json.JSONEncoder) to encode objects. You can customize encoding by
passing a custom subclass to either eliot.FileDestination or eliot.to_file:

from eliot.json import EliotJSONEncoder
from eliot import to_file

class MyClass:
def __init__(self, x):

self.x = x

class MyEncoder(EliotJSONEncoder):
def default(self, obj):

if isinstance(obj, MyClass):
return {"x": obj.x}

return EliotJSONEncoder.default(self, obj)

to_file(open("eliot.log", "ab"), encoder=MyEncoder)

For more details on JSON encoding see the Python JSON documentation.

Adding Fields to All Messages

Sometimes you want to add a field to all messages output by your process, regardless of destination. For example if
you’re aggregating logs from multiple processes into a central location you might want to include a field process_id
that records the name and process id of your process in every log message. Use the eliot.add_global_fields
API to do so, e.g.:

import os, sys
from eliot import add_global_fields

add_global_fields(process_id="%s:%d" % (sys.argv[0], os.getpid()))

You should call add_global_fields before add_destinations to ensure all messages get the global fields.

3.5.2 Journald

journald is the native logging system on Linux operating systems that use systemd with support for structured,
indexed log storage. Eliot provides native journald support, with the following features:

• The default message field (MESSAGE) stores the Eliot message as JSON.

3.5. Outputting Logs 43

https://docs.python.org/3/library/json.html


Eliot Documentation, Release 1.13.0+0.ge858c8e

• Failed actions get priority 3 (“err”) and tracebacks get priority 2 (“crit”).

• The ELIOT_TASK field stores the task UUID.

• The ELIOT_TYPE field stores the message or action type if available.

• The SYSLOG_IDENTIFIER stores sys.argv[0].

Installation

Journald requires additional libraries that are not installed by default by Eliot. You can install them by running:

$ pip install eliot[journald]

Generating logs

The following example demonstrates how to enable journald output.

"""
Write some logs to journald.
"""

from __future__ import print_function

from eliot import log_message, start_action, add_destinations
from eliot.journald import JournaldDestination

add_destinations(JournaldDestination())

def divide(a, b):
with start_action(action_type="divide", a=a, b=b):

return a / b

print(divide(10, 2))
log_message(message_type="inbetween")
print(divide(10, 0))

Querying logs

The journalctl utility can be used to extract logs from journald. Useful options include --all which keeps
long fields from being truncated and --output cat which only outputs the body of the MESSAGE field, i.e. the
JSON-serialized Eliot message.

Let’s generate some logs:

$ python journald.py

We can find all messages with a specific type:

$ sudo journalctl --all --output cat ELIOT_TYPE=inbetween | eliot-prettyprint
32ab1286-c356-439d-86f8-085fec3b65d0 -> /1
2015-09-23 21:26:37.972403Z

message_type: inbetween

We can filter to those that indicate errors:

44 Chapter 3. Documentation



Eliot Documentation, Release 1.13.0+0.ge858c8e

$ sudo journalctl --all --output cat --priority=err ELIOT_TYPE=divide | eliot-
→˓prettyprint
ce64eb77-bb7f-4e69-83f8-07d7cdaffaca -> /2
2015-09-23 21:26:37.972945Z

action_type: divide
action_status: failed
exception: exceptions.ZeroDivisionError
reason: integer division or modulo by zero

We can also search by task UUID, in which case eliot-tree can also be used to process the output:

$ sudo journalctl --all --output cat ELIOT_TASK=ce64eb77-bb7f-4e69-83f8-07d7cdaffaca
→˓| eliot-tree
ce64eb77-bb7f-4e69-83f8-07d7cdaffaca
+-- divide@1/started

|-- a: 10
|-- b: 0
`-- timestamp: 2015-09-23 17:26:37.972716
+-- divide@2/failed

|-- exception: exceptions.ZeroDivisionError
|-- reason: integer division or modulo by zero
`-- timestamp: 2015-09-23 17:26:37.972945

3.5.3 Using Logstash and ElasticSearch to Process Eliot Logs

Note: Logstash, Elasticsearch and Kibana change frequently. These instructions might not be quite accurate.

ElasticSearch is a search and analytics engine which can be used to store Eliot logging output. The logs can then be
browsed by humans using the Kibana web UI, or on the command-line using the logstash-cli tool. Automated systems
can access the logs using the ElasticSearch query API. Logstash is a log processing tool that can be used to load Eliot
log files into ElasticSearch. The combination of ElasticSearch, Logstash, and Kibana is sometimes referred to as ELK.

Example Logstash Configuration

Assuming each Eliot message is written out as a JSON message on its own line (which is the case for eliot.
to_file() and eliot.logwriter.ThreadedFileWriter), the following Logstash configuration will load
these log messages into an in-process ElasticSearch database:

logstash_standalone.conf

input {
stdin {
codec => json_lines {

charset => "UTF-8"
}

}
}

filter {
date {
# Parse Eliot timestamp filed into the special @timestamp field Logstash
# expects:
match => [ "timestamp", "UNIX" ]

(continues on next page)

3.5. Outputting Logs 45

http://elasticsearch.org
http://www.elasticsearch.org/overview/kibana/
https://github.com/jedi4ever/logstash-cli
http://logstash.net/


Eliot Documentation, Release 1.13.0+0.ge858c8e

(continued from previous page)

target => ["@timestamp"]
}

}

output {
# Stdout output for debugging:
stdout {
codec => rubydebug

}

elasticsearch {
# We make the document id unique (for a specific index/mapping type pair) by
# using the relevant Eliot fields. This means replaying messages will not
# result in duplicates, as long as the replayed messages end up in the same
# index.
document_id => "%{task_uuid}_%{task_level}"

}
}

We can then pipe JSON messages from Eliot into ElasticSearch using Logstash:

$ python examples/stdout.py | logstash web -- agent --config logstash_standalone.conf

You can then use the Kibana UI to search and browse the logs by visiting http://localhost:9292/.

3.6 Reading Logs

3.6.1 Reading and Filtering Eliot Logs

Eliot includes a command-line tool that makes it easier to read JSON-formatted Eliot messages:

$ python examples/stdout.py | eliot-prettyprint
af79ef5c-280c-4b9f-9652-e14deb85d52d@/1
2015-09-25T19:41:37.850208Z

another: 1
value: hello

0572701c-e791-48e8-9dd2-1fb3bf06826f@/1
2015-09-25T19:41:38.050767Z

another: 2
value: goodbye

Run eliot-prettyprint --help to see the various formatting options; you can for example use a more com-
pact one-message-per-line format.

Additionally, the highly recommended third-party eliot-tree tool renders JSON-formatted Eliot messages into a tree
visualizing the tasks’ actions.

Filtering logs

Eliot logs are structured, and by default stored in one JSON object per line. That means you can filter them in multiple
ways:

46 Chapter 3. Documentation

http://localhost:9292/
https://github.com/jonathanj/eliottree


Eliot Documentation, Release 1.13.0+0.ge858c8e

1. Line-oriented tools like grep. You can grep for a particular task’s UUIDs, or for a particular message type (e.g.
tracebacks).

2. JSON-based filtering tools. jq allows you to filter a stream of JSON messages.

3. eliot-tree has some filtering and searching support built-in.

For example, here’s how you’d extract a particular field with jq:

$ python examples/stdout.py | jq '.value'
"hello"
"goodbye"

Parsing Logs

Eliot also includes a parser for parsing logs into Python objects:

import json
from eliot.parse import Parser

def load_messages(logfile_path):
for line in open(logfile_path):

yield json.loads(line)

def parse(logfile_path):
for task in Parser.parse_stream(load_messages(logfile_path)):

print("Root action type is", task.root().action_type)

3.6.2 Message Fields in Depth

Structure

Eliot messages are typically serialized to JSON objects. Fields therefore must have str as their name. Message
values must be supported by JSON: int, float, None, str, dict or list. The latter two can only be composed
of other supported types.

Built-in Fields

A number of fields are reserved by Eliot’s built-in message structure and should not be added to messages you create.

All messages contain task_uuid and task_level fields. Each message is uniquely identified by the combined
values in these fields. For more information see the actions and tasks documentation.

In addition, the following field will also be present:

• timestamp: Number of seconds since Unix epoch as a float (the output of time.time()). Since system
time may move backwards and resolution may not be high enough this cannot be relied on for message ordering.

Every logged message will have either message_type or action_type fields depending whether they originated
as a standalone message or as the start or end of an action. Present in regular messages:

• message_type: The type of the message, e.g. "yourapp:yoursubsystem:yourmessage".

Present in action messages:

• action_type: The type of the action, e.g. "yourapp:yoursubsystem:youraction".

3.6. Reading Logs 47

https://stedolan.github.io/jq/
https://github.com/jonathanj/eliottree
https://stedolan.github.io/jq/


Eliot Documentation, Release 1.13.0+0.ge858c8e

• action_status: One of "started", "succeeded" or "failed".

The following fields can be added to your messages, but should preserve the same meaning:

• exception: The fully qualified Python name (i.e. import path) of an exception type, e.g. "yourpackage.
yourmodule.YourException".

• reason: A prose string explaining why something happened. Avoid usage if possible, better to use structured
data.

• traceback: A string with a traceback.

User-Created Fields

It is recommended, but not necessary (and perhaps impossible across organizations) that fields with the same name
have the same semantic content.

3.7 Scientific Computing with Eliot

When it takes hours or days to run your computation, it can take a long time before you notice something has gone
wrong, so your feedback cycle for fixes can be very slow. If you want to solve problems quickly—whether it’s
inconsistent results, crashes, or slowness—you need to understand what was going on in your process as it was
running: you need logging.

Eliot is an ideal logging library for these cases:

• It provides structured logging, instead of prose, so you can see inputs, outputs, and intermediate results of your
calculations.

• It gives you a trace of what happened, including causality: instead of just knowing that f() was called, you can
distinguish between calls to f() from different code paths.

• It supports scientific libraries: NumPy and Dask. By default, Eliot will automatically serialize NumPy integers,
floats, arrays, and bools to JSON (see Customizing JSON Encoding for details).

At PyCon 2019 Itamar Turner-Trauring gave talk about logging for scientific computing, in part using Eliot—you can
watch the video or read a prose version.

3.7.1 Logging large arrays

Logging large arrays is a problem: it will take a lot of CPU, and it’s no fun discovering that your batch process was
slow because you mistakenly logged an array with 30 million integers every time you called a core function.

So how do you deal with logging large arrays?

1. Log a summary (default behavior): By default, if you log an array with size > 10,000, Eliot will only log the
first 10,000 values, along with the shape.

2. Omit the array: You can also just choose not to log the array at all. With log_call you can use the
include_args parameter to ensure the array isn’t logged (see Logging Functions). With start_action
you can just not pass it in.

3. Manual transformation: If you’re using start_action you can also manually modify the array yourself
before passing it in. For example, you could write it to some sort of temporary storage, and then log the path to
that file. Or you could summarize it some other way than the default.

48 Chapter 3. Documentation

https://pyvideo.org/pycon-us-2019/logging-for-scientific-computing-reproducibility-debugging-optimization.html
https://pythonspeed.com/articles/logging-for-scientific-computing/


Eliot Documentation, Release 1.13.0+0.ge858c8e

3.7.2 Using Dask

If you’re using the Dask distributed computing framework, you can automatically use Eliot to trace computations
across multiple processes or even machines. This is mostly useful for Dask’s Bag and Delayed support, but can also
be used with arrays and dataframes.

In order to do this you will need to:

• Ensure all worker processes write the Eliot logs to disk (if you’re using the multiprocessing or
distributed backends).

• If you’re using multiple worker machines, aggregate all log files into a single place, so you can more easily
analyze them with e.g. eliot-tree.

• Replace dask.compute() with eliot.dask.compute_with_trace().

• Replace dask.persist() with eliot.dask.persist_with_trace().

In the following example, you can see how this works for a Dask run using distributed, the recommended Dask
scheduler for more sophisticated use cases. We’ll be using multiple worker processes, but only use a single machine:

from os import getpid

from dask.bag import from_sequence
import dask.config
from dask.distributed import Client
from eliot import log_call, to_file
from eliot.dask import compute_with_trace

@log_call
def multiply(x, y=7):

return x * y

@log_call
def add(x, y):

return x + y

@log_call
def main_computation():

bag = from_sequence([1, 2, 3])
bag = bag.map(multiply).fold(add)
return compute_with_trace(bag)[0] # instead of dask.compute(bag)

def _start_logging():
# Name log file based on PID, so different processes so stomp on each
# others' logfiles:
to_file(open("{}.log".format(getpid()), "a"))

def main():
# Setup logging on the main process:
_start_logging()

# Start three worker processes on the local machine:
client = Client(n_workers=3, threads_per_worker=1)

# Setup Eliot logging on each worker process:
client.run(_start_logging)

(continues on next page)

3.7. Scientific Computing with Eliot 49

https://dask.pydata.org
https://github.com/jonathanj/eliottree


Eliot Documentation, Release 1.13.0+0.ge858c8e

(continued from previous page)

# Run the Dask computation in the worker processes:
result = main_computation()
print("Result:", result)

if __name__ == '__main__':
import dask_eliot
dask_eliot.main()

In the output you can see how the various Dask tasks depend on each other, and the full trace of the computation:

$ python examples/dask_eliot.py
Result: 42
$ ls *.log
7254.log 7269.log 7271.log 7273.log
$ eliot-tree *.log
ca126b8a-c611-447e-aaa7-f61701e2a371

main_computation/1 started 2019-01-01 17:27:13 0.047s
dask:compute/2/1 started 2019-01-01 17:27:13 0.029s

eliot:remote_task/2/8/1 started 2019-01-01 17:27:13 0.001s
dask:task/2/8/2 2019-01-01 17:27:13

dependencies:
0: map-multiply-75feec3a197bf253863e330f3483d3ac-0

key: reduce-part-71950de8264334e8cea3cc79d1c2e639-0
multiply/2/8/3/1 started 2019-01-01 17:27:13 0.000s

x: 1
y: 7
multiply/2/8/3/2 succeeded 2019-01-01 17:27:13

result: 7
eliot:remote_task/2/8/4 succeeded 2019-01-01 17:27:13

eliot:remote_task/2/9/1 started 2019-01-01 17:27:13 0.001s
dask:task/2/9/2 2019-01-01 17:27:13

dependencies:
0: map-multiply-75feec3a197bf253863e330f3483d3ac-1

key: reduce-part-71950de8264334e8cea3cc79d1c2e639-1
multiply/2/9/3/1 started 2019-01-01 17:27:13 0.000s

x: 2
y: 7
multiply/2/9/3/2 succeeded 2019-01-01 17:27:13

result: 14
eliot:remote_task/2/9/4 succeeded 2019-01-01 17:27:13

eliot:remote_task/2/10/1 started 2019-01-01 17:27:13 0.001s
dask:task/2/10/2 2019-01-01 17:27:13

dependencies:
0: map-multiply-75feec3a197bf253863e330f3483d3ac-2

key: reduce-part-71950de8264334e8cea3cc79d1c2e639-2
multiply/2/10/3/1 started 2019-01-01 17:27:13 0.000s

x: 3
y: 7
multiply/2/10/3/2 succeeded 2019-01-01 17:27:13

result: 21
eliot:remote_task/2/10/4 succeeded 2019-01-01 17:27:13

eliot:remote_task/2/11/1 started 2019-01-01 17:27:13 0.001s
dask:task/2/11/2 2019-01-01 17:27:13

dependencies:
0: reduce-part-71950de8264334e8cea3cc79d1c2e639-0
1: reduce-part-71950de8264334e8cea3cc79d1c2e639-1

(continues on next page)

50 Chapter 3. Documentation



Eliot Documentation, Release 1.13.0+0.ge858c8e

(continued from previous page)

2: reduce-part-71950de8264334e8cea3cc79d1c2e639-2
key: reduce-aggregate-71950de8264334e8cea3cc79d1c2e639

add/2/11/3/1 started 2019-01-01 17:27:13 0.000s
x: 7
y: 14
add/2/11/3/2 succeeded 2019-01-01 17:27:13

result: 21
add/2/11/4/1 started 2019-01-01 17:27:13 0.000s

x: 21
y: 21
add/2/11/4/2 succeeded 2019-01-01 17:27:13

result: 42
eliot:remote_task/2/11/5 succeeded 2019-01-01 17:27:13

dask:compute/2/12 succeeded 2019-01-01 17:27:13
main_computation/3 succeeded 2019-01-01 17:27:13

result: 42

Warning: Retries within Dask will result in confusing log messages; this will eventually be fixed in a future
release.

3.8 Python 2.7 Support

The last version of Eliot to support Python 2.7 was release 1.7.

If you are using Eliot with Python 2, keep the following in mind:

• I will provide critical bug fixes for Python 2 until March 2020. I will accept patches for critical bug fixes after
that (or you can pay for my services to do additional work).

• Make sure you use an up-to-date setuptools and pip; in theory this should result in only downloading
versions of the package that support Python 2.

• For extra safety, you can pin Eliot in setup.py or requirements.txt by setting: eliot < 1.8.

• Critical bug fixes for Python 2 will be released as 1.7.1, 1.7.2, etc..

3.9 Contributing to Eliot

To run the full test suite, the Daemontools package should be installed.

All modules should have the from __future__ import unicode_literals statement, to ensure Unicode
is used by default.

Coding standard is PEP8, with the only exception being camel case methods for the Twisted-related modules. Some
camel case methods remain for backwards compatibility reasons with the old coding standard.

You should use black to format the code.

3.8. Python 2.7 Support 51

https://pythonspeed.com/services/#eliot

	Media
	Testimonials
	Documentation
	Quickstart
	Why Eliot?
	What’s New
	Generating Logs
	Outputting Logs
	Reading Logs
	Scientific Computing with Eliot
	Python 2.7 Support
	Contributing to Eliot


